首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3603篇
  免费   637篇
  国内免费   584篇
电工技术   1008篇
综合类   370篇
化学工业   115篇
金属工艺   101篇
机械仪表   458篇
建筑科学   28篇
矿业工程   27篇
能源动力   62篇
轻工业   13篇
水利工程   5篇
石油天然气   8篇
武器工业   88篇
无线电   227篇
一般工业技术   128篇
冶金工业   50篇
原子能技术   26篇
自动化技术   2110篇
  2024年   23篇
  2023年   151篇
  2022年   135篇
  2021年   188篇
  2020年   246篇
  2019年   296篇
  2018年   181篇
  2017年   230篇
  2016年   254篇
  2015年   232篇
  2014年   265篇
  2013年   326篇
  2012年   232篇
  2011年   254篇
  2010年   186篇
  2009年   214篇
  2008年   179篇
  2007年   210篇
  2006年   177篇
  2005年   140篇
  2004年   132篇
  2003年   92篇
  2002年   94篇
  2001年   67篇
  2000年   53篇
  1999年   36篇
  1998年   33篇
  1997年   31篇
  1996年   32篇
  1995年   26篇
  1994年   15篇
  1993年   19篇
  1992年   22篇
  1991年   13篇
  1990年   15篇
  1989年   2篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1964年   1篇
  1962年   1篇
  1954年   1篇
  1951年   1篇
排序方式: 共有4824条查询结果,搜索用时 31 毫秒
11.
Chatter is one of the most critical problems that causes poor surface quality and restriction of machining efficiency. Spindle speed variation (SSV) is a well-known technique for suppression of regenerative chatter. However, in the authors’ understanding, the chatter suppression effect diminishes when the spindle speed difference between the present and previous cutting moments is small. Furthermore, the stability changes largely according to the spindle speed variation profile which changes with the set condition of SSV parameters, e.g., nominal spindle speed, variation period and variation amplitude. Therefore, SSV parameters should be adequately set to avoid this limitation and to exert its effect throughout the entire duration of cutting. However, there is no clear methodology to determine the optimal condition. This paper presents the characteristics of chatter growth during SSV focusing on the change of chatter frequency, which lead to novel indices to evaluate the chatter stability when cutting with SSV. To verify the validity of the indices, time-domain simulations and the cutting experiments with triangular spindle speed variation (TSSV) are carried out. The influence of SSV parameters on the chatter stability is investigated from the simulation and experimental results. The limitations of widely utilized SSV profiles are discussed.  相似文献   
12.
In this paper, we propose an improved torque sensorless speed control method for electric assisted bicycle, this method considers the coordinate conversion. A low-pass filter is designed in disturbance observer to estimate and compensate the variable disturbance during cycling. A DC motor provides assisted power driving, the assistance method is based on the real-time wheel angular velocity and coordinate system transformation. The effect of observer is proved, and the proposed method guarantees stability under disturbances. It is also compared to the existing methods and their performances are illustrated through simulations. The proposed method improves the performance both in rapidity and stability.   相似文献   
13.
This paper proposes a design of control and estimation strategy for induction motor based on the variable structure approach. It describes a coupling of sliding mode direct torque control (DTC) with sliding mode flux and speed observer. This algorithm uses direct torque control basics and the sliding mode approach. A robust electromagnetic torque and flux controllers are designed to overcome the conventional SVM-DTC drawbacks and to ensure fast response and full reference tracking with desired dynamic behavior and low ripple level. The sliding mode controller is used to generate reference voltages in stationary frame and give them to the controlled motor after modulation by a space vector modulation (SVM) inverter. The second aim of this paper is to design a sliding mode speed/flux observer which can improve the control performances by using a sensorless algorithm to get an accurate estimation, and consequently, increase the reliability of the system and decrease the cost of using sensors. The effectiveness of the whole composed control algorithm is investigated in different robustness tests with simulation using Matlab/Simulink and verified by real time experimental implementation based on dS pace 1104 board.  相似文献   
14.
This article presents an extended-state-observer-based dynamic surface control approach for flexible-joint robot systems with asymmetric input saturation and large unknown dynamic knowledge. Traditional controllers for flexible-joint robot systems usually use approximation technology to deal with unknown dynamics knowledge. Unlike the traditional control algorithm, this article utilizes an extended state observer to estimate the unknown dynamics. For the closed-loop system, the delay strategy handles the time-scale separation issue, the filtering system overcomes the “explosion of differentiation” caused by the repeated differentiation of auxiliary control signals, and the mean-value-theorem solves the input saturation problem of the actuator. The stability analysis implies that estimation errors of extended state observers (ESOs) and other state variables are semiglobally uniformly ultimately bounded. Compared with fuzzy control algorithms, the novel ESO-based dynamic surface control approach not only omits online learning time but also uses only a few control parameters to obtain satisfactory tracking performance. Finally, a comparison simulation experiment is provided to illustrate the effectiveness of the gained conclusions.  相似文献   
15.
ABSTRACT

In this paper, we apply the active disturbance rejection control, an emerging control technology, to output-feedback stabilisation for a class of uncertain multi-input multi-output nonlinear systems with vast stochastic uncertainties. Two types of extended state observers (ESO) are designed to estimate both unmeasured states and stochastic total disturbance which includes unknown system dynamics, unknown stochastic inverse dynamics, external stochastic disturbance without requiring the statistical characteristics, uncertain nonlinear interactions between subsystems, and uncertainties caused by the deviation of control parameters from their nominal values. The estimations decouple approximately the system after cancelling stochastic total disturbance in the feedback loop. As a result, we are able to design an ESO-based stabilising output-feedback and prove the practical mean square stability for the closed-loop system with constant gain ESO and the asymptotic mean square stability with time-varying gain ESO, respectively. Some numerical simulations are presented to demonstrate the effectiveness of the proposed output-feedback control scheme.  相似文献   
16.
A method is proposed to generate categorical colour observer functions (individual colour matching functions) for any field size based on the CIE 2006 system of physiological observer functions. The method combines proposed categorical observer techniques of Sarkar et al with a physiologically-based individual observer model of Asano et al and a clustering technique to produce the optimal set of categorical observers. The number of required categorical observers varies depending on an application with as many as 50 required to predict individual observers' matches when a laser projector is viewed. However, 10 categorical observers are sufficient to represent colour-normal populations for personalized colour imaging. The proposed and recommended categorical observers represent a robust and inclusive technique to examine and quantify observer metamerism in any application of colorimetry.  相似文献   
17.
This paper is concerned with distributed data-driven observer design problem. The existing data-driven observers rely on a common assumption that all the information about the system, and the calculations based upon this information are centralized. Therefore the resulting algorithms cannot be applied to the distributed systems in which each local observer receives only a part of the output signal. On the other hand, traditional model-based distributed state estimation methods generally assume that the processes are decomposed according to the known process models, while in data-driven approaches there is no such information available. The main goal of this paper is to extend the centralized data-driven observer design approach to the distributed framework. The stability of the proposed data-driven distributed observer is also proved analytically. A quadruple-tank process is simulated to demonstrate the performance of the proposed scheme.  相似文献   
18.
This paper focuses on the problem of adaptive robust tracking control for a class of uncertain multiple-input and multiple-output (MIMO) nonlinear system. Unlike most previous research studies, model dynamics, disturbances, and state variables are unknown in this paper. A novel observer-based direct adaptive neuro-sliding mode control approach is proposed of which the only required knowledge is the system output. By incorporating the Adaptive Linear Neuron (ADALINE) neural network (NN) into the conventional sliding mode observer, the proposed observer has favorable performance. In the controller, a radial basis function (RBF) NN is constructed to approximate the unknown equivalent control laws and the estimation of the sliding surface is applied as the input. A gain-adaptation sliding mode term is designed to enhance the robustness of the control system. Besides, the free parameters of the ADALINE NN and the RBFNN are updated online by adaptive laws to obtain optimal approximation performance. Finally, the comparative simulations are given to show the effectiveness and merits of proposed scheme.  相似文献   
19.
A method for estimating the sway angle using an observer has already been proposed. The state observer estimates the sway angle accurately and must use the detected sway angle value. However, the estimated sway angle has an error owing to rope length error, friction force, and wind. Moreover, the container mass cannot be determined, and therefore the observer parameter is not suitable. We already proposed robust antisway control for overcoming rope length error without adding a new sensor. Further, we designed a friction disturbance observer to cancel out the influence of the friction force. In this paper, we first propose a container mass estimation method when a crane system performs rolling up control. The observer parameter can be selected using the estimated mass value. Second, in crane parallel shift control, we propose a robust antisway control even when there is a wind disturbance. We design a wind disturbance observer and propose a wind disturbance estimator to separate the friction observer output from the wind disturbance observer output. We confirm through experiments that the proposed method can reduce vibration.  相似文献   
20.
Optimal capacitor placement in distribution systems solved by the hybrid method of CODEQ (called HCODEQ method) is proposed in this work. The concepts of chaotic search, opposition-based learning, and quantum mechanics are used in the CODEQ method to overcome the drawback of parameters selection in the differential evolution (DE). However, a larger population size must be used in the CODEQ method. That is a drawback for all evolutionary algorithms (EAs). To overcome this drawback, acceleration operation and migrating operation are embedded into the CODEQ method, i.e. HCODEQ method. The use of these two operations can increase the convergence speed without decreasing the diversity among individuals. One benchmark function and various-scale capacitor placement systems are used to compare the performance of the proposed method, CODEQ method, DE, simulated annealing (SA), and ant system (AS). Numerical results show that the performance of the HCODEQ method is better than the other methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号